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Abstract: 

 Linear error correcting codes associated to higher dimensional algebraic varieties defined over 

finite fields have been topical interest. For example codes associated to Hermitian varieties, Grassmanian 

varieties, Schubert varieties and Flag varieties have been studied quite extensively .The codes associated 

to these types of varieties is the central interest. Codes associated with   Schubert varieties in G(2,5) over 

F2have been studied in [14] .The corresponding extended binary Schubert code is denoted by Ω̅19 and its 

generator matrix is given in [1] having order 5 × 19. 

In this paper we have discussed the properties of extended binary Schubert Code Ω̅19 

1. Introduction: 
  In [13], Victor Wei initiated the idea of weight hierarchy of a linear code, aggravated by 

application in type II wire-tap channel in cryptography. Wei introduced the r-th generalized Hamming 

weight of a linear code as the minimum support weight of any of its r-dimensional subcode. For a class of 

Algebraic-geometric codes the generalized Hamming weights were investigated by a number of 

researchers such as Tsfasmann-Vladut [12], 1 Nogin [8], Ghorpade-Lachaud [1], Ghorpade-Tsfasman [2], 

Hirshfeld-Tsfasman-Vladut [7], Ghorpade-Patil-Pillai [3]. Generalized Hamming weights proved to be of 

enormous applications in coding theory to study the structure of a code. It is therefore natural to consider 

an extension of the notion of generalized weights-the generalized spectra of linear codes.  

 The problem of determining the generalized spectra of a linear [n, k]q code is first studied by       

Klove in [4] and [5]. In [4], he gave a MacWilliams identity for the support weight distribution of linear 

codes called the generalized MacWilliams identity. In [5], he determined the weight enumerator 

polynomial (also called support weight distribution function) for irreducible cyclic codes.   

 In [3], the problem of determining generalized spectrum for another class of linear codes arising 

from higher dimensional projective varieties namely Grassmannians varieties is studied.  

 The generalized spectrum of code associated with Schubert sub varieties of Grassmannians G(2, 

5) over F2 is determined by [14]. In this paper the corresponding binary Schubert code is denoted by Ω19  

is defined whose generator matrix is found  in [14] having order 5 × 19.In this paper we have discussed 

all the properties of this binary Schubert code and found extended binary Schubert Code Ω̅19. 

2. Linear Codes: 

2.1 Basic definitions: Let Fq denote the finite field with q elements, q = ph, p a prime and h a natural 

number .We denote 
n

qF   as the n-dimensional vector space over Fq. For any 
n

qFx ,  the support of (x), 

is the nonzero entries in  x = (x1, x2,..., xn). The support weight (or Hamming norm) of x is defined by, 

 xpx sup . 

More generally, if W is a subspace of
n

qF , the support of W, Supp (W) is the set of positions where not all 

the vectors in W are zero and the support weight (or Hamming norm) of W is defined by, 
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     WW  supp  

A linear  qkn, -code is a k-dimensional subspace of
n

qF . The parameters n and k are referred to as the 

length and dimension of the corresponding code. The minimum distance d = d(C) of C is defined by 

   0,:min  xCxxCdd  

More generally, given any positive integer r, the rth higher weight dr = dr(C) is defined by 

   rDwithCofsubspaceaisDDCdd rr  dim:min  

Note that d1(C) = d(C). It also follows that ji dd   when ji   and that  Cpdk sup  ,where k is 

dimension of code C. Thus we have nddddd kk  121 ...1 . The first weight d1 is equal to 

the minimum distance and the last weight is equal to the length of the code. 

An  qkn,  -code is said to be nondegenerate if it is not contained in a coordinate hyperplane of 
n

qF . Two

 qkn,  -codes are said to be equivalent if one can be obtained from another by permuting coordinates and 

multiplying them by nonzero elements of Fq. It is clear that this gives a natural equivalence relation on the 

set of  qkn, -codes. 

The (usual) spectrum (or weight distribution) of a code 
n

qFC  is the sequence no AAA ,...,, 1  defined by 

   0:  cCcCAA ii . 

More generally, the rth higher weight spectrum (or rth support weight distribution) of a code C is the 

sequence  ,,..., 10

r

n

rr AAA  defined by 

 iDrDCDAr

i  ,dim:     (2.1) 

This naturally allows us to define rth support weight distribution function (or rth weight enumerator) as 

      nn

rr

rr ZAZAAZA  ...1

0     (2.2) 

Hence for each kr 0 , we have a weight enumerator. We can also define the rth higher weight as 

   0:min  r

ir AiCd . 

Note that A0(Z) = 1. Also note that if 
n

qFx , then 

       qFxxx   : . 

Lemma 2.1 If C is a code with dimension k over F2 then for Z = 1 

     
2

1 









r

k
Ar

       

 (2.3) 

Where 
    
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r

k
,which is the number of subspaces of dimension r in a K 

dimensional space. 

2.2 Self Orthogonal  Codes:  

The standard inner product on 
n

qF is defined by  


n

i ii yxyx
1

:,  
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Definition 2.2.1 The Dual of a code
n

qFC   is the code 

 n

q

n

q FcallforcxFxC  0,::
 and code code C is called self orthogonal if 𝐶  is subset of C. 

Let Br(Z) be the rth support weight distribution function of the dual cod
C . In [4] Klove gave the 

MacWilliams identity for the generalized spectrum of code C and its dual, 

Theorem 2.2.1 (Generalized MacWilliams Identity) For all  0m we have 

        
  

 


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
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m
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m

r
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r

r

nmmkr

r
Zq

Z
AmZqqZBm

0 0 11

1
11 ,  

where        12 ...1  rmmmm

r qqqqqqqm . 

The number [m]r is known as the number of the ordered linear independent r-elements in the m-

dimensional space. 

For r = 1, we can write the MacWilliams identity for usual spectrum in the following 

theorem. 

Theorem 2.2.3 1 + (q-         
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3. Projective Systems :An alternative way to describe codes is via the language of projective systems 

introduced in [Q12]. Let 
1kP be a projective space of dimension k-1over Fq.  qknA ,  -projective system 

is a (multi)set X of n points in the projective space 
1kP over Fq . We call X nondegenerate if these n 

points are not contained in any hyper plane of 
1kP . Two  qkn, -projective systems are said to be 

equivalent if one can be obtained from another by a projective transformation. For any positive integer r, 

the rth higher weight of a projective system X is defined by 

   rensioncoofPofsubspaceaisXnXdd k

rr dim:max 1  

The generalized spectrum of a projective system X is defined by, 

   rcoinXPXAA kr

i

r

i   dim,:1
 

for all i = 1, 2, ..., n, r = 1, 2, ... . It can be proved that    XACAA r

i

r

i

r

i  .  

For any  qkn, -linear code C, one can construct corresponding  qkn, -projective system in 

the following way: Consider coordinate forms qi FCx : such that 

  ini vvvx ,...,: 1  

These forms can be considered as n points of the space C* of linear functions on C (the dual linear space). 

If C is nondegenerate, that is, all forms xi are nonzero as functions on C, then they define n points in

 *1 CpPk 
, or a projective system.  

A subcode CD of dimension r correspond to the set of elements of C* vanishing on D, that is, to the 

subspace ** CD  of codimension r and, therefore, to a subspace of codimension r in 
1kP . The weight 

of a subcode D equals to the number of coordinate forms not vanishing on it, that is, the number of points 

of X not lying on this subspace of codimension r. 

On the other hand, now we show how one can construct a linear code for a nondegenerate projective 

system. Given a projective system    VPPPPPX k

n  1

11 ,,...,, , we lift it to a system 
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 nyyy ,...,, 21 of vectors in V . Any yi defines a mapping qFV * , and the set  nyyy ,...,, 21 defines the 

mapping 
n

qFV * , given by         vyvyvyvvv nn ,...,,,,..., 2121  whose image is some linear code. 

Moreover it is an  qkn, -code if the projective system is nondegenerate. 

The above correlation provides the proof for the following theorem. (see12) 

Theorem 3.1 There is a one-to-one correspondence between the set of the equivalence classes of 

nondegenerate  qkn, -projective systems and the set of the equivalence classes of nondegenerate linear

 qkn, -codes. This correspondence preserves the parameters n, k and the higher weights kddd ,...,,1 2 . 

The above correspondence in terms of generator matrix can be viewed as follows: Let G is a generator 

matrix for a  qkn, -linear code C, and let g1,g2,…,gn
k

qF   be the columns of G. Suppose that none of the 

gi’s is the zero vector. then each gi determines a point [gi] in the projective space  k

q

k FPP 1
. If these 

gi are pairwise independent, then   ,,...,,: 21 ngggX   is a set of n points in
1kP  . This will be the 

corresponding projective system. Thus the n columns of G determines a projective system X. Vice versa, 

If X is a projective system, then a generator matrix for C is the nk  matrix whose columns are the 

representatives of points in projective system X. 

3.2 Codes from Schubert Varieties : 
Ghorpade and Lachaud in [1] proposed the generalization of Grassmann codes as Schubert 

codes. The Schubert codes are indexed by the elements of the set 

    mZmlI ll   ...1:,...,,:, 121 , 

Given any  mlI , , the corresponding Schubert code is denoted by  mlC , , and it is the code 

obtained from the projective system defined by the Schubert variety   in G(l, m) with a nondegenerate 

embedding induced by the Plücker embedding. We define  as  

    liforiAWmlGW i ,...,2,1dim:,   , 

where Aj denotes the span of the first j vectors in a fixed basis of V, for mj 1 . Ghorpade and 

Tsfasman in [2], determined the length  n and dimension  k of  mlC , . It was conjectured by 

Ghorpade in [1], that 

        

 qmlCd ,     (3.4) 

where  
 

 




l

i li

ll
i

1 21
2

1
...:  .The complete weight hierarchy and second 

support weight distribution of codes associated with all Schubert subvarieties of G(2, 4) is known due to 

Patil ([9]).  

4 Codes associated with Schubert varieties in G(2, 4) over F2 : 
Let I(2, 4) be an indexing set defined by, 

   I(2,4) : = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)} 

Now by definition given any  ml,I , the Schubert variety is defined by, 

       0:,: βpmlGP  

We consider Schubert varieties for each above and the codes associated with them. 
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The projective system consists of F2-rational points of  4,2 . The number of rational points on  4,2 is 

given by, 

    

19

84421

22222 342332341331321
















qn

 
We have considered the 5 × 19  matrix as a generator matrix for Schubert code which is defined here  

4.1 Definition 

Extended Binary Schubert Code Ω̅19 

Let G be the 5 × 19 matrix given by  

𝐺 =

[
 
 
 
 
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1  0
0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0]

 
 
 
 

 

i.e 𝐺 = [𝐼5|𝑋]  Where 𝑋 =

[
 
 
 
 
 0 0 0 0 0 1 1 1 1 1 1 1 1 1
 0 0 1 1 1 1 1 1 1 0 0 0 0 0
 0 1 0 1 1 1 1 0 0 1 0 0 0 1
 1 0 1 0 1 0 1 1 0 0 1 0 1  0
 1 1 0 0 1 0 1 0 0 1 1 1 0 0]

 
 
 
 

 is 5 × 14 matrix  

The binary linear code whose generator matrix is G is called extended binary Schubert code and it is 

denoted by  Ω19
̅̅ ̅̅ ̅ . 

4.2 Properties of extended binary Schubert code 

In this section we will discuss some of its properties   

Proposition 4.2.1 

LetΩ̅19  be the extended binary code generated by matrix G which is defined above then following 

properties holds for the corresponding code 

i) The length of Ω̅19 is 19. 

ii)The dimension ofΩ̅19is 5 

iii)The parity check matrix forΩ̅19is the matrix 14 × 19 matrix ,𝐻 = [𝑋𝑡|𝐼14] 
iv)Ω̅19is self orthogonal linear code. 

v) The weight of every codeword is  multiple of  2 

vi) The codeΩ̅19 has no codeword of weight 2 

vii) The linear codeΩ̅19 is exactly three error correcting code . 

Proof: 

i) By looking at generator  matrix of Ω̅19 length is clear  

ii) Dimension of Ω̅19 is 5 since Generator matrix of Ω̅19 consist of 𝐼5 

iii)By applying algorithm of finding parity check matrix of Ω̅19 we get desired result  

iv)In the generator matrix every row vector is mutually orthogonal to other so Ω̅19  self orthogonal code 

v) In the basis weight of every codeword is even so weight of every codeword in this code Ω̅19  is 

divisible by 2 

vi)since minimum weight of every codeword in basis is 8 so there do not exist a codeword of weight 2 

vii)Distance of this code 8 so it is an exactly 3-error  correcting code  

hence proved  
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5. Conclusion  

In this article we defined extended binary Schubert code Ω̅19 of length 19 ,dimension 5 and distance 8.i.e 

Ω̅19 is a binary [19,5,8] linear code some properties of it are discussed  
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